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TWO-CENTER PROBLEM ORBITS 
AS INTERMEDIATE ORBITS FOR 

THE RESTRICTED THREE-BODY PROBLEM 

by 
R. G .  Langebartel 

Goddard Space Flight Center 

SUMMARY 

The restricted three-body problem is treated by keep- 
ing for the intermediate orbit Hamiltonian all te rms  except 
those representing a generalization of the centrifugal and 
Coriolis forces. The intermediate orbit, therefore, takes 
into account the gravitational forces of both finite masses. 
An approximation is presented for representing a class of 
intermediate orbits similar to the orbits suggested for the  
Apollo project. The perturbation equations a re  given in 
outline. 
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TWO-CENTER PROBLEM ORBITS 
AS INTERMEDIATE ORB6TS FOR 

THE RESTRICTED THREE-BODY PROBLEM 

by 
R. G .  Langebartel 

Goddard Space Flight Center 

INTRODUCTION 

The early masters in the field of celestial mechanics, particularly Euler, discovered that the 
problem of the motion of a particle about two fixed mass points ("two fixed centra") can be reduced 
to quadratures, although these integrals do not represent elementary functions (Reference 1, p. 
145). Over a hundred years later Charlier (Reference 2, Vol. II) suggested that the two-center 
orbits could be used as intermediate orbits in the restricted three-body problem, and he sketched 
a broad outline for such a procedure. His program was carried out in some detail by Samter (Ref- 
erence 3). He found the calculations lengthy and the perturbations relatively large, which seemed 
to dampen his enthusiasm somewhat for Charlier's idea. Samter treated the case of the two given 
masses' being nearly equal, basing his approximations on this circumstance. In the present article 
we investigate the efficacy of Charlier's method for orbits of the type suggested for the Apollo 
mission. The near-ejection type orbits admit of an approximate representation for the intermedi- 
ate orbits in te rms  of elementary functions. 

THE EQUATIONS OF MOTION 

Let the two finite masses in the restricted three-body problem be indicated by p and 1 - p. 
These two masses are  assumed to  be describing circular orbits about their common center of 
gravity. Let ( x ,  y )  be barycentric coordinates for a system rotating with the masses so that the co- 
ordinates of the particle with mass p a r e  (1 - p, 0) and of the particle with mass 1 - p are (-p, 0). 
The Lagrangian and force function for the restricted three-body problem in this rotating coordi- 
nate system then are (Reference 1, p. 350): 

1 1 L = 7j (2 ti') + ( x i - y i )  + U(x, y )  , 

u = 7j (x' ty')  + +- 1 1 - p  

I ( x  +p)2  + y y  I(x-1 tp)' t y ' y  
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Since the two-center problem is separable in either elliptic o r  bipolar coordinates and since 
we shall be using (certain generalizations of) two-center orbits as intermediate orbits we deter- 
mine the Lagrangian, force function, and Hamiltonian in these new coordinates. 

Bipolar coordinates, r l  , r2, are the distances of ( x ,  y) from the points (-p, 0) and (1 - p,  0) ,  
respectively. Thus 

Elliptic coordinates, 5 ,  7 ,  have simple representations in te rms  of r l  , r2: 

1 c o s <  r l  - r 2  , 

cosh?  = r l  t r 2  . 

Consequently, the transformation formulae from the barycentric coordinates to  the elliptic are 

The restricted three-body problem Hamiltonian in bipolar coordinates has the form 

where $i are the momenta conjugate to  Ti. And in the case of elliptic coordinates with b1 conju- 
gate to  < and $2 conjugate to  7 the restricted three-body Hamiltonian is 

sinh 77 [cosh 7 i- ( 1  - 2p) cos 51 
- 1.1 ~~ b; - ~ 

2 2 
cosh2 7 - c o s 2 <  ” ’ c o s h ’ ~  - cos2 < H =  

cosh2 q - COS’ 

s i n  5 [( 1 - 2p)  cosh q +cos  e] 2( 1 - I.)_ 2P 
cash' 7 - cos‘ 5 $2 - coshq i- cos < - cosh q - cos < . (2) 
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The formulae for the two-center problem are 

2 2 - 2,u 
H ( 2 )  = $2 - cosh9  + COSE coshrj - c o s t  * cosh2 r j  - cos’ 5 ” cosh2 r j  - cos‘ 5 

Actually, of course, Equations 3a, 3b, and 3c are not strictly the formulae for the two fixed centers 
problem if we adhere to  our definition of X, y since these represent coordinates in a rotating sys- 
tem whereas in the Newtonian two-center problem the two masses are fixed in an inertial frame. 
A more nearly precise statement would be that H(’) represents the H of (2) with the Coriolis and 
centrifugal force te rms  (the te rms  linear in b i )  suppressed. Note, though, that the hi represent 
different quantities in H and H(’ )  since the Lagrangian for the restricted three-body problem has 
te rms  in 2 and 5 as well as i2 and 5’. 

PARTITION AND SEPARATION OF VARIABLES 

In view of (2) we see that Hamilton’s Equation for the restricted three-body problem in ellip- 
tic coordinates is 

1 aW 
- iy t (cosh’ 7 7 -  cos‘t)-’  {2($!)’ + 2 ( g y  - sinh 77 77 + (1  - 2,u) cos 6 

1 

The variables 5,  9 do not separate in this partial differential equation although they do in Hamilton’s 
Equation formed from H(’). Thus, a separable problem for an intermediate orbit would result if 
H be partitioned into H, t H ,  with H, = H(’ )  . However, a larger class of intermediate orbits is ob- 
tained from the following setup: 
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IIIIIII . . .. . . -. - .. .. 

The functions u(5), ~ ( 7 )  a r e  at our disposal. If they are taken as zero then H, is formally the 
same as the two-center Hamiltonian and consequently is separable. However, the more general 
H, given in Equation 5 is still separable and we have the functions u, v available to be chosen for 
our convenience, say to minimize certain perturbations, for example. 

Somewhat simpler expressions ultimately result i f  a contact transformation is made on H 
which effectively completes the square in the p, and p, polynomials in H, , the transformation 
being 

Then 

1 1 1 Go = 2 (cosh2 A, - c o s 2  A, ) - '  + A: - 4 u ' (A, )  + (1  - 2p) cos A, - 7 v Z ( A 2 )  - cosh A, , 

(7) 
G I  = - (cosh2 A, - cos2  A, ) - ,  ({sinh A,  . [cosh A, + (1 - 2p) cos A, ]  - u(A1)} (A, + + .(A,)} 1 

+ {sin A ,  . [( 1 - 2 p )  cosh A,  + cos A,] - ~ ( k , ) }  + + v(A2)})j 

Thus the Hamilton Equation for the intermediate orbit is 

a%, 
at + 2 (cosh' A, -COS'  A,)-' 1 1 

- 4 U' (A,) + (1 - 2p) COS A ,  - V' (A2) - cosh A, = 0 . ( 8 )  

By employing the separation of variables method we obtain as a complete integral 

wherein h and a are canonical constants. 
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THE INTERMEDIATE ORBIT 

According to  the Hamilton-Jacobi theory the intermediate orbit is provided from Equation 9 
by 

a i io  

a$, 

-P, = aa ’ 

% = a h , *  i (lo) 

J 
where P,, p, are the remaining two canonical constants. 

In order to obtain a more specific class of orbits we shall specialize Equation 9 to  some ex- 
tent by taking the functions u and v to  be of the form 

1 4 uz (A) u o  + u1 cos A + u, coszA , 

1 
4 vz (A) e v o  + v 1  cosh A t v ,  cosh’ A 

with U ,  , V, constants. This choice keeps the orbits within the general types that appear in the 
two-center problem. 

Introduce new constants gl, v i  defined by  

From Equations 9 to  1 2  we then obtain the equations defining the intermediate orbit: 
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A, = f {po + p l  cos A, + p 2  cos2  A, , (144  

A, = k l/.of.l...hA, + u 2  c o s h ‘ x  

We defer making the choice for the constants A i ( 0 )  in Equations 13a and 13b until we have ex- 
amined the character of the integrals more fully. 

The integrals a r e  elliptic and cannot be expressed in compact form in terms of elementary 
functions apart from very exceptional values of the constants pi, ui.  The general character of 
the orbits depends most immediately on the zeros of the polynomials p, x2 + p, x + po and 
U ,  x 2  t V ,  x + v0 inasmuch as the vanishing of these polynomials provides the points of zero mo- 
menta by Equations 14a and 14b. The books by Charlier and Wintner (References l and 2) dis- 
cuss the dynamical significance of these roots in some detail for rather general problems. A 
proposed orbit for the Apollo capsule is frequently described rather loosely as being first an arc 
of a two-body ellipse extending from near the earth to  the neutral point between the earth and the 
moon and then continuing on another two-body ellipse to near the moon, thereby describing a very 
slender figure of the form: Now, orbits of this general character a r e  included in Equation 13a 
and 13b: these a r e  the cases I& and Ihp of Charlier (Reference 2, Vol. I, p. 126) which represent 
quasi-lemniscates winding about the two mass points. We shall assume 

s 

which is the case, for  example, if  U, , v 2  are  zero or  a re  quite small, and 41 < 0. Let p,, p2 be the 
roots of p2 x2 + p, x + p o  = 0 and let r l ,  r, be the roots of u 2  x 2  + v, x + vo = 0 .  TO give the orbits 
in question, have r , ,  r,  real  with r ,  > 1 > r, and p,, p, either complex or else real with p ,  3 p z  > 1 .  

This means that the ranges of the variables A, , A, are 0 5 A, 5 271, 0 ’< cosh A, 5 r ,  , since 
pz COS, A ,  + p l  C O S  A ,  + p 0  = p2 ( C O S  A, - p l )  ( C O S  A, - p 2 )  does not now vanish or  go negative for real  
A,, and v 2  cash' A, + U ,  cash A, + v0 remains positive o r  zero only in indicated range for A,. The 
explicit formulae for  the roots in te rms  of the coefficients a re  
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It appears from the foregoing that a rather convenient choice for A,(') and A,(') in Equations 
13a and 13b is A,(') = 0 9 2  A ( O )  = -F1 where cosh F l  = r l  . The integrals in these equations thereupon 
vanish at the point (in barycentric coordinates) 

i.e., the point on the line connecting the two mass points, on the outside of the point with mass 
Thus p1 is the instant of passage through this point. 

The solving of Equations 13a and 13b for A,, A, in te rms  of t can be effected in te rms  of el- 
liptic functions but the expressions are prolix. Simpler formulae can be obtained through the in- 
troduction of parameters ",, 6 ,  defined as 

These a r e  not independent, of course, since we have from Equations 13a and 13b, 

The integrals in Equations 16 have relatively simple expressions in te rms  of inverse elliptic 
functions, and the equations solved for h, and A, give (Reference 4, p. 134): 
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pure real, as we shall do from here on. Both formulae for coshA, a r e  valid no matter 
whether r , > - 1 or r , < - 1 ,  but the form of the first is such that all quantities in it a r e  real  if 
r ,  > - 1, and similarly for the second if r ,  < - 1. Hereafter, though, we shall use only the first ex- 
pression for cosh A,. 

Equations 17a and 17b represent a pair  of parametric equations with parameter a1 fo r  the 
intermediate orbit. If these expressions a re  introduced into Equations 14a and 14b formulae for 
the momenta in terms of o1 result: 

a, - p ,  . (18b) 

By using the counterpart for elliptic functions of the trigonometric half-angle formulae 
(Reference 4, p. 146) we can express cos  A,  and cosh A, in a form devoid of squared elliptic 
functions : 

1 
= d - 2 ~ ~  (r l  - r2)  , 

r l  + 1 - ( r l - 1 ) c n ( 2 a 2 o , , ~ , ~ 2 d n ( 2 a 2 a , ,  6,) , k, = { m l ) ( r l  - r,)- 1' , (1 9b) I: r ,  + 1 + ( r l - 1 ) c n ( 2 a 2 a 2 ,  k , ) + 2 r l d n ( 2 a 2 a 2 ,  k,) 
cosh A, = 

Observe from Equations 17 o r  19 that the degenerate case resulting from letting r - 1 gives 
simply cosh A, = 1 which represents the straight line solution running from one of the mass points 
to the other. Also note that putting r l  = 1 causes R, to vanish. And k1 is small if p1 is close to 
p 2 .  Therefore, there a re  lemniscate-type orbits for which the elliptic function parameters R ,  and 
6, a r e  small, which suggests expanding cos A , ,  cosh A,, A,, A, in powers of R, and k,. The result 
is especially convenient since these expansions happen to involve elementary functions only. The 
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Fourier expansions of the elliptic functions (Refermce 4, p. 147), 

2Kdn(2Ku) = 77 + 47~ 2 q" cos(2nm) , 1 t q'" 
n = l  

provide a means for obtaining representations valid for small R since 

In Equation 20 K = K(k) is the "complete elliptic integral of the first kind'?: 

If q is replaced in Equation 20 through the use of Equation 21 there is obtained 

s n  2Ku = s i n m  + (& s i n m  t 1 s i n  h) fi' t o(k4) , 

dn 2Ku = 1 f (- 4 t 4 cos 2 m  

) 1 
cn 2Ku = c o s m  + - 16 c o s m  + 16 cos 3m R2 t O(R4) , 

( l  

1 1  

The formulae specifying the intermediate orbit valid for small R1, W, are then found from Equa- 
tions 19, 18, and 20 to  be 

i 



I I l l  

f 

= : i P m )  (P2 f 1) 9 I 
c, = j m ( P 1  - I ) - ,  ( P 2  + I)-, ' t 

I 
where a2 = 6, -p ,  . 

Better (but more complicated) approximations than those of Equations 24a through 24f can be 
obtained by employing the process of "convergence improvement" on Equation 20. The success 
of the method depends essentially on the possibility of discov,ering a known Fourier ser ies  that is 
close to the given one. The difference ser ies  will then, in general,'converge more rapidly than 
the original. We apply this method to  the cosine amplitude functions. From Equation 20 we have 

- - ( 1  - q )  q'/2 cos m - - f: lq:";:Z+l cos (2n t  1 ) m  , 
( 1  t q ) 2  - 4 q c o s z m  

n = O  

- cos( 2n t 1) nu , 
( 1  - q )  q'/2 cos 7rLl _ _ _ _  

n =  1 

c o s ( 2 n + l ) m  . 
1 - q - 42- + 2q2 cos 2 m  -- 43 - 

= q ' / 2 c o s m  
( 1  + q )  (1 - 2qcos 2 m  f q 2 )  

n = l  

10 



The Fourier series introduced above, 

was summed by employing simple operations on a known ser ies  (Reference 4, p. 213). A similar 
process works just as well for d n u  so that we find 

J 
Consequently, these along with Equation 21 substituted into Equations 19a and 19b provide formu- 
lae for C O S  A, and cash A 

a r e  not written out here. 
with e r rors  of the eighth order in k ,  and k,. The resulting formulae 

The coordinates and momenta of the intermediate orbit a r e  expressed in terms of the param- 
eter 6,. To locate position in orbit for a given instant it is necessary to  know the relationship 
between 5 ,  and 4,. Under differentiation Equations 13a and 13b become 

Also, from Equation 16, we find 

Thus, 
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or  

2rl - ( r l - I )  snZa,(u-p,) 

2 t (rl- l)  sn2a2(u-pz) 
cosh /c, = - ,  

,. 
C O S X ,  = 

p2 + 1 - 2p2 sn2 a ,  ~~ u 

p, + 1 - 2 s n 2 a l  u 

There appears to  be no very simple compact expression devoid of integrals for .t in terms of 3 , .  

However, we can get the lead-off te rms  in an expansion in powers of k ,  and k 2  by using Equations 
24a through 24f and effecting the integration. The resulting formula is 

4( . t -P,)  = [Ip: t-2 p2 (1 - p 2 ) ,  k? - 2  s k ; ] * i  

p,2 - 1 s in&,  6, p,' - 1 s i n k l  6, . (2p: t 1 t 3p2 cos k, 6 , )  

&lZ 
t -  t-. 

b, p, + cosk ,  3, eel ( p 2  f cos .e, 3 

where 

12 
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The last two lines of Equation 27 represent a constant such that the entire expression vanishes 
with A , ,  in accordance with Equation 26. Note that we have taken the constants of integration in 
such a way that A, = o and t = p1 when 6, = 0 .  

Equation 27 is not useful if k, is small because it is r , - 1 that is small, since the integrations 
have introduced r , - 1 in the denominators. This difficulty can be avoided in this case by express- 
ing the formula for cosh A, in Equation 24b in te rms  of &, and &, (instead of k ,  and &, ) before sub- 
stituting in Equation 26 and integrating. 

PERTURBATION EQUATIONS 

The variation equations a re  formed on the Hamiltonian c1 given in Equation 7: 

'u H, = - (cash, A, - COS' A,)- '  ({sinh A, [coshh, i- (1 - 2p) cos A l l  - u(Al)} {A,  f 5 1 u(Al)} 

A little elliptic function manipulation on Equations 17a and 17b gives formulae for the trigono- 
medic  and hyperbolic sines which occur in G,. : 

Similarly, 

d u o  + u1 + u J ( P 2  f l), - 2 ( P ,  + 1) p, + (P, + 1) + 2uz P*] sn2 a1 6 1  + 4(., t u,  P, + u, Pz' )  sn4 a ,  6 1  
= + -  - 

p, + 1 - 2 sn2  a l  o1 

and 

$ .(A,) = f {v, t v 1  coshh, + v, cosh' A, 

J4 (v, + v 1  r l  + v, r?) + 2(rl - 1) [2v, + v 1  ( r ,  - 1) - 2vz rl] sn2 a, *2 + (rl  - ly(vo - v 1  + v,) sn4 a, 6, 
= + -  

2 t (r, -I) sn2 a, b2 

The constants ui , v i  a r e  still at our disposal. For  instance, the radicands inu(h,) and v(A,) are 
perfect squares if we take u,' - 4u0 U,  = V: - 4v, V, = 0 , and the formulae are somewhat simplified. 
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The equations of variation for the canonical constants are of the form 

We may think of the coordinates and momenta as being expressed in te rms  of the parameter o1 so 
that I?, in Equation 28 is to be regarded as known at this point as a function of o, rather than of %. 

Consequently, we transform Equation 28 to  get o, as the independent variable in place of it. Let 
us  write .p?. = a,, a = a*. Then, with the independent variable's being t the variation equations are 

The Hamiltonian for the problem we a r e  treating is independent of any explicit value of % so we shall 
work out the transformation to  61 of Equation 29 under this assumption. Let us represent the re- 
lation between o, and .t by 

In our particular case this transformation is, of course, that of Equation 26. The total differential 
of % is, according to Equation 30, 

in which the summation convention is observed, i.e., a term having an index repeated is to be re-  
garded as a sum taken over that index. Thus, the variational equations take on the form 

14 



in which s i r  is the Kronecker delta: S i r  = 0, i # r ,  and S i r  = 1, i = r .  In a standardized form 
the equations are 

where 

wherein the summation convention applies. It remains to  be seen how the various quantities in 
Equation 31 are to  be computed. NOW 

and it is this function 
afi,/aai that occur in the coefficients in Equation 31 a r e  thus found from 

( a r ,  p r ,  6,) that the GI in Equation 7 actually represents. The afil/api and 

with t then replaced by @(ar,  p r ,  6,). A s  a matter of fact, a$/ Bi  
practice by implicit differentiation of t = @(ai ,  P i ,  6,) where el = $, which automatically replaces 
t by (a function of) 31. The derivatives a @ / d a , ,  d@/dPp , ,  a d a s ,  are simply the straight partial de- 
rivatives of the function @ (a i ,  p i ,  &,) . 

nd a$/aai will be computed in 

We shall not carry out the details of determining explicitly the coefficients in Equation 31 for 
our particular case but shall content ourselves with working out necessary auxiliary formulae. 
We find that 

(33) 

15 
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with all remaining derivatives of pi, v i  with respect to a,  A, and Pi zero. Furthermore, 

a a i  - 
= 0 ,  ap (37) 

As already noted, the determination of d$/dh, d+/da, d$/dPi will come from implicit differentiation 
of t = @(a. h, P i ,  a l ) ,  that is to say, implicit differentiation of Equation 26. The results are 

* = -  - ~ ,  4 
d P 1  coshZ A, - cos’ A I  

16 



sn2 a ,  u c n 2  a l  u 

- (4 - 1) ( P I  - P ,  2P, P 2 )  
u sn a l  u cn a l  u dn a ,  u - 4(p; - 1) sn a l  u 

4a1  

d C 0 S i l  

aa = [ ( p z + l )  sn2 a ,  u c n 2  a ,  u 

- (Pzz - 1) (P I  ' - P z  + 2P1 P z >  a sn a l  u a&, 
1 

u sn a l  u cn a l  u dn a ,  u - 4 (p; - 1) sn a ,  u 
2al  (PI -4) 

(41) > 

CONCLUDING REMARKS 

The formulae of the preceding section are lengthy and involved, and it appears difficult to get 
pertinent information out of Equation 31. For a first order theory it may well be better to deal 
with the variation equations in t of Equation 28, rather than those in of Equation 31. The useful- 
ness of the partitioning introduced in this paper will, of course, depend largely on how much trouble 
it is to handle the perturbation equations and on how large the perturbations turn out to be. As far 
as application to  the Apollo project is concerned, work remains to  be done to ascertain the prob- 
able range of values for r i ,  p i  for these orbits, so that it can be determined whether the type of 
approximation used in representing the intermediate orbit (i.e., low order in W, and k 2 )  will be 
reasonable. 

A certain amount of latitude is present due to  the arbitrary character of the functions u(A,) 
and v(A2) introduced at the partitioning of the original Hamiltonian. This paper considers a spe- 
cific choice for the form of these functions, although six arbitrary constants are left available. 
An investigation could well be made concerning the feasibility and usefulness of some other choice 
for these functions. 
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Appendix A 

List of Symbols 

- c} Two finite masses in the restricted three-body problem 

Barycentric coordinates for a system rotating with masses such that particle coordinates 
for p and 1 - p a r e  (1 - p, 0) and (-p, 0) 

Lagrangian and force functions for the restricted three-body problem 

Bipolar coordinates representing distances of (x, y )  from the points (-p, 0) and (1 - p,  0), 
respectively 

Elliptic coordinates expressed in terms of r 

Momenta conjugate to  r ,  

Canonical constant in Equation 9 

Canonical constants in Equation 10 

Constants defined by Equation 1 2  

r 
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